
 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 157

CCllaassss--OOrriieenntteedd MMooddeell GGrraapphh DDeessiiggnn BBaasseedd
oonn AAbbssttrraacctt SSyynnttaaxx TTrreeee

Appala Srinuvasu Muttipati1, Durga Prasad Dakineni2
1,2Assistant Professor, Department of Computer Science and Engineering, Baba Institute of Technology

and Sciences, Visakhapatnam, India
srinuvasu.mutti@gmail.com, info2ddp@gmail.com

Abstract: Software model graph might play an important role in the representation of software system. To achieve
this, essential initial works are found in the literature. For instance, construction of the model graph for software system
includes different types of classes and their relationships between the classes. It is now essential to find a system such that
it will be possible to implement model graph to visualize a software system or software design. In this paper, proposes an
approach for constructing of a class-oriented model graph and analyzing source code using abstract syntax tree. This
approach recovers the high-level structure of software architectures solidly from source code to produce a Class-Oriented
(software) Model Graph. The obtained model graph will endow with the profoundly understanding of relations between
the classes while compared with Unified Modeling Language class diagram.
Keywords: abstract syntax tree, source code analysis, class-oriented model graph, class diagram.

 Introduction
In several software engineering disciplines, source code analysis represents a basic and preliminary step

needed to perform activities such as software maintenance and program transformation. Programming
building design, in addition, assumes a key part in refactoring procedures, that represent the receptive a part
of maintenance assignments. Refactoring enhances the inward design structure of software system by
keeping the generation of low-quality product. Recognizing these kinds of identical non- customary design
patterns and customary design defects may provide a significant advantage in terms of reducing the cost of
maintenance; the rationale is that the most commonly-used structures in software design are the most
effective places to look for refactoring opportunities that they influence numerous elements of the design. for
instance, non- customary structures that prefer to design patterns is also changed to fits normal forms, and
common design defects are directly distinguished, which allows them to be mounted in multiple areas at
once. Likewise, frequent recurrent indistinguishable design structures are typically the most reusable
elements of the design; these elements will provide sensible candidates for added use in future design.

This paper proposes an Abstract Syntax Tree based Class-Oriented model Graph (AST-COG) tool for
identifying and representing a graph with classes and their relationships or association between the classes for
object-oriented language programs written in C#. It also makes use of the Nfactory libraries (open source) to
extract the information at various levels (class/method/assembly) in order to generate the abstract syntax tree
from which the class-oriented model graph is constructed. The graph visualization software is utilized to
show the model graph. This paper is organized as follows: section 2 presents the background studies, section
3 discusses the proposed approach used to construct the abstract syntax tree from the C# source code and
then constructed the model graph. Section 4 talks about the implementation of the tool, section 5 discusses
the outcome of the project. Finally, section 6 represents the conclusion.

Related Work
In this section, we will discuss the existing graph notations and their relationships. We will also

describe the existing libraries that are used for abstract syntax tree and graph.

A. Unified Modeling Language
The Unified Modeling Language (UML) is proverbial by all software system architects, developers, and

testers. UML is used for documenting use cases, class diagrams, sequence diagrams, and activity diagram,
sequence diagram will only offer the sequence flow of the application however class diagram could be a bit
completely different. Thus, it is the foremost widespread UML diagram within the software engineer
community [1]. The class diagram could be a static diagram. It represents the static view of an application.
the class diagram is not only used for visualizing, describing and documenting completely different options
of a system however additionally for constructing an executable code of the software system application.

The class diagram describes the attributes and operations of a class and also the constraints obligatory on
the system. The class diagram is widely utilized in the modeling of object-oriented systems as a result of they
are the sole UML diagrams which may be mapped directly with object oriented languages.

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 158

The class diagram shows a set of classes, interfaces, associations, collaborations and constraints. The
class diagram is also called a structural diagram. The rationale of the class diagram is to model the static view
of an application. The class diagrams are the exclusive diagrams which may be directly mapped with object-
oriented languages and therefore widely used at the time of construction.

There are several software system tools that assist software system engineers to achieve this either by
forward engineering or reverse engineering.

• Forward engineering could be an ancient method of moving high-level abstracts and logical,
implementation-independent designs to the physical implementation of a system.

• Reverse engineering could be a method of analyzing an existing system to identify its elements and their
interrelationships and to form representations of the system at a high level of abstraction. In most cases,
reverse engineering is used to retrieve missing design documents from the prevailing source code in an
abstract model UML format for finding out each the static structure and dynamic behavior of a system.

B. Abstract Syntax Tree in Java
The Abstract Syntax Tree is the base framework for many powerful tools of the Eclipse IDE, including

refactoring, Quick Fix and Quick Assist. The Abstract Syntax Tree maps plain Java source code in a tree
form [2]. This tree is more convenient and reliable to analyze and modify programmatically than text-based
source. This article shows how you can use the Abstract Syntax Tree for your own applications.

To start off, you provide some source code to parse. This source code can be supplied as a Java file in
your project or directly as a char[] that contains Java source. The source code described is parsed. All you
need for this step is provided by the class org.eclipse.jdt.core.dom.ASTParser. This phase is called “Parsing
source code”.

The Abstract Syntax Tree is the result. It is a tree model that entirely represents the source you provided
by parser. If requested, the parser also computes and includes additional symbol resolved information called
"bindings".

Figure1. Abstract Syntax tree in Java

Manipulating the AST is needs to be changed; this can be done in two ways:

1. By directly modifying the AST.
2. By noting the modifications in a separate protocol. This protocol is handled by an instance of

ASTRewrite.

If changes have been made, then they need to be applied to the source code that was provided by java
source.

Clone detection using abstract syntax trees was suggested by Andrew Yahin et al [3]. A functional
system for recognizing close-miss and sequence clones on scale has been introduced. The methodology
is taking into account varieties of strategies for compiler common sub expression elimination using
hashing. The method is implemented directly by standard parsing technology which identifies clones in
arbitrary language constructs, and computes macros that permit evacuation of the clones without
influencing the operation of the program. The method is applied to a genuine use of moderate scale, and
affirmed past appraisals of clone density of 7-15%, suggesting there is a “manual” software engineering
process “redundancy” consistent. Automated methods can recognize and remove such clones, lowering the

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 159

value of this constant, at concomitant savings in software engineering or maintenance costs. Clone
discovery tools additionally have good potential for supporting domain analysis.

C. NRefactor

NRefactory is the C# analysis library used in the SharpDevelop and MonoDevelopIDEs. It allows
applications to easily analyze both syntax and semantics of C# programs. It is quite similar to Microsoft's
Roslyn project; except that it is not a full compiler-NRefactory [4] only analyzes C# code, it does not
generate IL code. The .NET Compiler Platform "Roslyn" uncovered an arrangement of Compiler APIs and
Workspaces APIs that gives affluent information about source code and that has full dedication with the C#
and Visual Basic dialects [5]. The move to compilers as a stage drastically brings down the obstruction to
passage for making code centered devices and applications. It makes numerous open doors for advancement
in areas, for example, meta-programming, code generation and change, intuitive utilization of the C# and
VB language, and installing of C# and VB in area particular language. The goals of the rewrite were to have
a more accurate syntax tree (including exact token positions) and to integrate the IDE-specific semantic
analysis features and refactorings into the NRefactory library. This allows us to share them between
SharpDevelop and MonoDevelop. The architecture of the NRefactory with two system types is shown in
Figure 2.

NRefactory 5.0 has recently shipped with MonoDevelop 3.0. NRefactory is also used in the ILSpy
decompiler, in Unity's IL-to-Flash converter, and as a front-end in the C#-to-JavaScript compiler Saltarelle.

Figure 2. Architecture of NRefactory with its two system types

Software quality tool for measuring the different code metrics for C# source code using Abstract syntax tree
is proposed by Pavitdeep singh et al., [6]. Author generated abstract syntax tree of the source code by using
Nfactory libraries.

D. Graph Libraries
 Graphs are mathematical abstractions that are helpful for finding many varieties of issues in
engineering science. Consequently, these abstractions should even be delineating in computer programs. A
uniform generic interface for traversing graphs is of utmost importance to encourage utilized of graph
algorithms and data structures. A part of the Boost Graph Library [7] could be a generic interface that
enables access to a graph's structure, however, hides the main points of the implementation. this can be an
“open” interface within the sense that any graph library that implements this interface are going to be
practical with the BGL generic algorithms and with different algorithms that conjointly use this interface.
The BGL provides some general purpose graph categories that adapt to the present interface, however, they
are not meant to be the only graph categories, there actually are going to be different graph classes that are
better for certain things.

E. Graph Visualizes
Graphviz is open source graph representation software [8]. Graph visualization is a way of representing

structural information as diagrams of abstract graphs and networks. It has vital applications in systems
administration, bioinformatics, software engineering, database and web design, machine learning, and in
visual interfaces for other technical domains.

Proposed Approach

The proposed design of the tool consists of various phases from C# source code to syntax tree creation.
Once the syntax tree is generated it is resolved to using the type system to generate the semantic tree, which

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 160

is further utilized by the tool to recognize the class names, their relation and graph representation. The
overall architecture of the proposed system is described as shown in Figure 3.

Figure 3. Block Diagram for Construction of AST-COG

A. C# Source code

The proposed tool initially takes a single file as input and then reads all the projects within that single
file (Solution file) and then parses the project files to find all the source files within the projects. During
traversal of various files present it will also filter out the files which are marked for exclusion during
parsing. Once all the required files are read by the system they are passed to the language parser for parse or
syntax tree creation.

B. Syntax Tree
 C# source code is simply a string. Parsing the string into a syntax tree tells us that it is an invocation
expression, which has a member reference as target. The syntax tree would be similar to the tree shown in
Figure 5.
new InvocationExpression
{

Tar = new MemberReferenceExpression
{
Tar = new IdentifierExpression("obj"),
 MemberName = "DoThing"
},
 Arguments =
{
 new PrimitiveExpression(0)
}

}

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 161

C. Semantic Tree
A syntax tree doesn’t provide us the complete information regarding what Object or DoThing.

DoThing most likely is an instance method, and Object seems to be a local variable, parameter or a field of
the current class. It may be that Object could be a class name and DoThing a static field containing a
delegate. The semantic tree provides the information regarding these attributes. The semantic tree
constructed from the above syntax tree would to be similar to the tree shown as follows

new InvocationResolveResult {
TatResult = new LocalResolveResult('myclass Object;'),
Member = 'public void TestClass.DoThing (int)',
Arguments =
{ new ConstantResolveResult('System.Int32', 0) }
 }

Figure 5 exemplify an instance of the parser or syntax tree for the sample C# source code from Figure 4.

Figure 4. Sample Source code

Figure 5. Syntax tree for sample source code

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 162

D. Abstract Syntax Tree based Class-Oriented Model Graph
The proposed tool takes a single file as input and then reads all the projects within the solution file and

then parses the project files to find the entire source file within the projects. During the traversal of various
files present, it will filter out the files which are marked for exclusion during parsing. Once all the required
files are read by the system, they pass the language parser of syntax tree creation. The vertices of this graph
are classes, abstract classes, and interface classes. The edge of the graph represents directed relations
between these entities (node/ vertices).

Relation types in the software model graph are based on UML-like relations. At this point, especially
consider class and sequence diagrams of the UML. Moreover, to handle some important relations that is
visually hidden in the UML diagrams. For example, if a method of a class has the same signature with a
method of the parent class, then there is an “override” relation between these classes that is Number of
visually observable in UML class diagrams. We also include some important high-level relations from
UML sequence diagrams, such as the “create” and “method call” relations between entities. Possible entity
types, relation types and their labels are given in Table 1.

Table 1: Labels of nodes and edges of AST-MOC

Node Label Node Type

C Class
I Interface
A Abstract class

Edge Label Relation Type (Edges from P to Q)
X Extends
I Implements
A Has field type
T Uses generic type declaration
L Method has a local parameter
P Uses methods parameter
R Methods has been return type
M Has method call
F Access field
C Creates
O Overrides methods

The nature of the object oriented design is that, there can be more than one relation between the vertices
(classes and interfaces). To build a simple and understandable graph, we collect all of the labels of parallel
edges between two vertices into a solitary set of labels, such that “Lij” is a set of labels of directed edge “eij”
that contains all relation labels from vertex “vi” to vertex “vj”. For example, if two entities have both method
call {M} and method parameter {P} relations in the same direction, then the combined label set for this edge
becomes {M}�{P} = {M,P}.

Implementation

In this section we describe about our tool’s (AST-COG) simple interface with a focus on its main
features: analyzing and display are activated by clicking the respective buttons. The user interface contains
parse, resolve, generate, find reference, go and export buttons. Figure6 shows the browsing of project file.
Figure 7 shows the source code and syntax tree. Figure 8 shows the semantic tree for loaded file.

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 163

Figure 6. Browsing project file

Figure 7. Source code and syntax tree for loaded file

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 164

Figure 8. Semantic tree with resolve ()

Figure 9, find references of a member type declaration in the file shown below

Figure 9. Find References

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 165

Figure 10. Class names and adjacency nodes

In figure 6 we can observe the check box if the check box is selected it generates the direct label graph, if not it
generated undirected label graph, which is shown in figure 11 and figure 12

Figure 11. Directed Label graph

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 166

Figure 12. Undireected Label graph

Table 2: Nodes and edges in proxy

Node Label Total number of node labels
C 5
I 0
A 1

Edge Label Total number of edge labels
X 2
I 0
A 1
T 0
L 5
P 0
R 6
M 2
F 0
C 0
O 0

 The above Table 2 gives the information about the total number of class labels and edge labels occur in the
proxy pattern and Figure 13 shows the output with respective of class and their edge labels.

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 167

Figure 13. Output of the node label names and edge relations

Results and Discussion
The results are analyzed from proxy pattern source code. The outcome of class oriented model graph is

shown in figure 11 and figure 12 which consists of 6 classes, five are classes and one is abstract classes and
16 relations between the classes is shown in Table 2. The tool will generate the directed as well as
undirected label graphs for given project. Table 3, shows the information about Gifviewer and QLNET
applications with total number of nodes/vertices and edges and their edge weights. The correctness of the
tool is confirmed by a manual check process within various classes of the source code are considered and
walking through the graph established the correctness of our tool. The tool yields correct results for all the
applications developed with different .Net frameworks.

Table 3: Information about two real world applications

Name of the
application

Number
of

vertices

Number
of

edges

Number of edge weight

X I A L P R M O

GIFVIEWER 47 165 11 0 29 38 3 3 176 33
QLNET 735 899 461 49 255 753 234 256 210 50

Conclusion

In this paper presented an abstract syntax tree based class-oriented model graph tool which is

specifically designed to cover the few communication messages in this construction. It takes the solution
file for the C# application as an input to the system. It then loads all the projects files in memory. Project
files are read one by one to load all the source code files in order to construct the syntax tree. Once the

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 115577--116688 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.126 Page | 168

creation of the syntax trees are completed, it is ready for the analysis. Graph is generated at the class and
relations. The class-oriented model graph generated via this tool is quite satisfactory. Moreover, user can
save the data to notepad using the export functionality for future work and research purpose. Future
enhancement for this work is to find the different types of the software structures are included in a particular
object-oriented system by applying a clustering approach.

References

[1] Booch, J. Rumbaugh and I. Jacobson, Unified Modeling Language User Guide, 2nd ed., Addison-
Wesley Professional, 2005.

[2] Thomas Kuhn, Abstract Syntax Tree, Olivier Thomann. Made available under the EPL v1.0 November 20, 2006.
http://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/

[3] Baxter, A. Yahin, L. Moura, M. S. Anna and L. Bier, “Clone Detection Using Abstract Syntax Trees,” In
Proceeding of the international Conference on Software Maintenance, Washington, DC, USA: IEEE Computer
Society, 1998, pp. 368.

[4] Using NRefactory for analyzing C# code http://www.codeproject.com/Articles/408663/Using-NRefactory-for-
analyzing-Csharp-code

[5] Roslyn, https://roslyn.codeplex.com/
[6] P. Singh, S. Singh and J. Kaur, “Tool for generating code metrics for C# source code using abstract syntax tree

technique. SIGSOFT Software Engineering. Notes 38, 2013, vol. 5, pp.1-6.
[7] Boost C++ Libraries, http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/table_of_contents.html
[8] Graphviz-Graph Visualization software, http://www.graphviz.org/

